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MISCELLANEOUS FACTORS

1 centimeter = 0.3937 inch; 1 inch = 2.54 cm

1 micron (mm) = 10−6 m

1 meter = 3.28 ft; 1 foot = 12 in. = 30.48 cm

1 hectare (ha) = 10,000 m2 = 2.471 acres

1 acre = 43,560 ft2 = 0.4047 ha

1 liter = 1000 cm3 = 0.264 gal

1 gallon = 0.1337 ft3 = 3.785 liter

1 acre foot = 325,804 gallons

1 cord = 128 ft3 = 3.624 m3

1 barrel (bbl) = 42 gal = 159.1 liter

1 kilogram = 2.2046 lb; 1 pound = 16 oz = 0.454 kg

1 therm = 100,000 Btu

1 watt = 1 J/sec = 3.41 Btu/hr

1 kilowatt = 1000 J/sec = 239 cal/sec = 3413 Btu/hr = 1.341 hp

1 horsepower = 550 ft ⋅ lb/sec = 746 W

1 year = 3.15 = 107 sec

density of water = 1 g/cm3 = 62.4 lb/ft3

density of gasoline = 0.70 to 0.78 g/cm3; average = 0.72 g/cm3

density of diesel fuel = 0.82 to 0.95 g/cm3; average = 0.85 g/cm3

density of propane = 0.50 g/cm3

density of air at STP = 1.293 kg/m3

heat capacity of air = 1000 J/kg ⋅K = 0.019 Btu/ft3 ⋅ ∘F

ASTRONOMICAL DATA

Mean radius of earth 6.371 × 106 m

Mass of earth 5.975 × 1024 kg

Surface temperature of earth 290 K

Mean distance from earth to sun 1.49 × 1011 m

Mass of sun 1.99 × 1030 kg

Surface temperature of sun 6000 K

Radius of moon 1.741 × 106 m

Mass of moon 7.35 × 1022 kg

Mean distance of moon from earth 3.84 × 108 m
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Energy Unit Conversion Factors

J kWh Btu

1 Joule (J) equals 1 2.78 × 10−7 9.49 × 10−4

1 kilowatt hour (kWh) equals 3.60 × 106 1 3413

1 calorie (cal) equals 4.184 1.16 × 10−6 3.97 × 10−3

1 British thermal

unit (Btu)

equals 1055 2.93 × 10−4 1

1 foot-pound (ft ⋅ lb) equals 1.36 3.78 × 10−7 1.29 × 10−3

1 electron-volt (eV) equals 1.60 × 10−19 4.45 × 10−26 1.52 × 10−22

Energy Equivalents

J kWh Btu

Crude petroleum

(42 gallon barrel)

6.12 × 109 1700 5.80 × 106

Bituminous coal (1 tona) 2.81 × 1010 7800 2.66 × 107

Natural gas

(1000 cubic feetb)
1.09 × 109 303 1.035 × 106

Gasoline (1 gallonc) 1.32 × 108 36.6 1.25 × 105

Uranium-235 (1 gram) 8.28 × 1010 2.30 × 104 7.84 × 107

Deuterium (1 gram) 2.38 × 1011 6.60 × 104 2.25 × 108

a1 ton = 2000 lb = 0.907 tonne.
bAt STP.
cThe U.S. gallon is used in this text. The Imperial gallon used in Canada and Great

Britain equals 1.201 U.S. gallons
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PREFACE

In the year 1973, the term “energy” became common in households throughout theUnited
States. At that time, an energy crisis suddenly fell upon the country and for some time it
was not unusual for motorists to spend hours waiting in line to obtain gasoline at a flling
station. Customers were sometimes limited to a 5-gallon purchase. The speed limit on all
highways throughout the nation was reduced to 55 miles per hour, and it stayed that way
for 15 years. Decorative lighting was markedly reduced during the holiday season as an
energy-saving measure.

The experience of 1973 gave immediate signifcance to energy for a wide audience.
Much has happened since that energy crisis. Gasoline is now widely available, as is electri-
cal energy. However, the problems of energy are complex and go far beyond questions of
the immediate availability of motor fuel. These issues affect the entire world and the prob-
lems are becoming more severe with the passage of time. While technological advances
have vastly increased our reserves of fossil fuel, scientists now overwhelmingly agree that
the majority of those reserves must remain in the ground if we are to preserve our envi-
ronment, even as the citizens of developing countries aspire to share more fully in the use
of the world’s energy resources.

The topics of energy and the environment are obviously crucial to all of us, and effec-
tive policies at all levels of government depend on an informed citizenry. To address this
need, courses dealing with the subject are being increasingly offered at colleges and univer-
sities in the United States and elsewhere. Energy and the Environment was created from
experience the authors have had in teaching such courses starting more than 40 years ago
at the University of Colorado in Boulder.

The feld is changing rapidly, and the step from one decade to the next can be a long
one.We continually see new developments in every aspect, from fossil fuels to alternatives,
from hydrogen to hybrids. Ourmajor environmental problem, climate change, has become
an issue of broad concern, and there are now serious efforts to seek means of mitigation.
In this third edition we have included recent statistical information on fossil fuel reserves
and consumption as well as new data on atmospheric carbon dioxide and climate change.

Energy and the Environment deals with the core subjects of energy and the envi-
ronment. With respect to energy, we have tried to cover the basic concepts, resources,
applications, and problems of current interest. With respect to the environment, we have
included most of the major concerns; unfortunately, because of space limitations, we have
had to omit some areas such as water resources and pollution.When the problems covered
in this book are examined together, it is seen that many, but not all, of our environmental
problems have their origin in our quest for abundant and inexpensive energy.

The web-based material now available on this feld is voluminous. With cautious
judgment on the part of the reader, these sites can provide abundant, authoritative, and
up-to-date information. We have made frequent use of numerous websites, including
those of the United States Energy Information Administration, The World Energy
Council, The Oak Ridge National Laboratory, and many others, which we have tried to
cite when information from those sites is used. In addition, at the end of each chapter we
have added many new web-based references to some that have been carried over from
the previous editions.

Energy and the Environment is intended for students having little or no background in
science or mathematics. Some elementary calculations are included in the subject matter,

xv
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xvi Preface

but these calculations do not involve mathematics beyond introductory algebra, and this

is introduced along with the material under discussion.

In this third edition we recognize that many of the troubling issues that have been

so apparent for more than 40 years continue on their course. We continue to face the

problems associated with fossil fuel combustion, a threat of nuclear weapons prolifera-

tion, no politically acceptable means of nuclear waste disposal, changing global climate

with no global approach to a solution, burgeoning human population, and so forth. How-

ever, encouraging developments are appearing in the areas of renewable energy, energy

conservation, and energy-effcient transportation as well as in several other areas.

To extend a comment put forth by Aldo Leopold many years ago, it is our hope that

this text will help to bring its readers beyond thinking that “heat comes from the furnace,

food comes from the store, water comes from the faucet, gasoline comes from the flling

station, truth comes from the experts.”

Many of the words above and in the following text were written by our colleague,

friend and co-author Jack Kraushaar, who passed away in 2013 during the preparation

of this third edition. His insights and enthusiasm, and his contributions to the material

presented here, are largely responsible for the development of this series of textbooks.
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CHAPTER 1

Energy Fundamentals, Energy
Use in an Industrial Society
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1.1 Introduction

Energy enters our everyday lives in many different ways. The energy in the food we eat

maintains our body temperature and lets us walk, talk, lift things, and toss frisbees. The

use of energy in food has been essential for the existence of all humankind and animals

throughout our evolution on this planet. In some developing countries the supplying of

food for energy and nutrition is a diffcult task that requires most of the waking hours

of the population. Food acquisition is just as essential in the more developed countries,

but because of the greater mechanization of agricultural production, the effort of only a

relatively small number of persons is devoted to obtaining food. This leaves most of the

rest of us free to pursue other activities throughout our lives.

1
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2 Chapter 1 Energy Fundamentals, Energy Use in an Industrial Society

Energy in forms other than food is also essential for the functioning of a technical

society. For example, in the United States, many times more energy in the form of engine

fuel goes into the agricultural enterprise than is obtained in the useful foodCalorie content

of the food produced. Prodigious amounts of energy are also used to power automobiles,

heat homes, manufacture products, generate electricity, and perform various other tasks.

In order for our society to function in its present patterns, vast amounts of coal, natural gas,

and oil are extracted from the earth and burned to provide this energy. To a lesser extent

we also derive energy from hydroelectric plants, nuclear reactors, electric wind generators,

and geothermal plants, and, of course, we all beneft enormously from the energy obtained

directly from the sun.

The fossil fuels: coal, natural gas, and oil, supply about 82% of the energy used in

the United States. These resources evolved hundreds of millions of years ago as plant and

animal matter decomposed and was converted under conditions of high temperature and

pressure under the earth’s surface into the hydrocarbon compounds that we now call fossil

fuels. Since the beginning of themachine age, industrial societies have become increasingly

dependent on fossil fuels. A hundred and ffty years ago, the muscular effort of humans

and animals played an important role in the American economy, and frewood supplied

most of the heat energy. Now only a small fraction of our energy comes from frewood

and we rely much less on the physical effort of people and animals. The process by which

we have moved to our present dependence on coal, oil, and natural gas is illustrated in

Figure 1.1, where the energy consumed in theUnited States each year from various sources

is shown in terms of quadrillion British thermal units (QBtu) for the years 1850 to 2003.

The defnition of QBtu will be given in Section 1.6.

Should we be concerned that so much of our energy is now coming from fossil fuels?

Here are two of many factors that should cause concern.

First, the fossil fuel resource is limited in amount. The fossil fuels were produced by

solar energy hundreds of millions of years ago, and when they are gone, there will be no

more. It is true that the fuels are still being formed, but at an entirely negligible rate com-

pared to the rate at which we are consuming them. We frst began consuming the fossil

fuels at an appreciable rate only about 150 years ago. How long will they last? On a global

scale we will still have some coal for a few centuries, but natural gas and oil will be in short

supply more quickly. In the United States, the situation is worse than the global average

because we are depleting our resources at a faster rate than in other fossil fuel-rich areas

around the globe. Figure 1.2 shows the narrow blip of our fossil fuel use set against a time

scale of thousands of years. As you consider the brief duration of this blip, remember

that we have living trees thousands of years old, a much longer time than what will be

spanned by the entire era of fossil fuel consumption. It is clear from this fgure that we

live in an extraordinary time in the many billion year history of the earth. The entire stock

of fossil fuels available for our use has been held in storage under the earth’s surface for

more than a hundred million years, and now it is being completely exploited in only a

few centuries.

Second, unintended environmental consequences result from the extensive scale

of our use of the fossil fuels for everything from heating our homes to powering our

automobiles. When we burn coal, natural gas, or oil to obtain energy, gaseous compounds

are formed and dumped into the atmosphere. This is causing problems we are just

beginning to face. For many years it was felt that the emitted gases were not signifcant,

given the vastness of the earth’s atmosphere. But now with increasing world population,
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Figure 1.1 Various forms of energy consumed in the United States since 1850. This type of graph

is called a semilogarithmic plot, an explanation of the scales is given in the Appendix. Sources:
Historical Statistics of the United States, Colonial Times to 1970, U.S. Department of Commerce.

Bureau of the Census, 1975; U.S. Energy Information Administration, Annual Energy Review,
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4 Chapter 1 Energy Fundamentals, Energy Use in an Industrial Society

and industrialization, this is no longer true. The atmospheric pollution is producing health

problems and even death, and it is nowbecoming recognized that carbon dioxide emissions

are threatening to produce climate changes over the entire globe.

Can we fnd solutions to these problems of resource depletion and environmental

pollution? Clearly the answers are not simple or the solutions would have been put into

effect by now. The subject is complex and involves some understanding of topics such as

patterns of resource depletion, the workings of heat engines, solar cells, wind generators,

nuclear reactors, and a myriad of other specialized subjects. We do not have to become

experts on each of these individual topics to be suffciently well informed as voting cit-

izens to infuence a rational decision-making process. Our goal is to gain understanding

concerning the essential points.

1.2 Why Do We Use So Much Energy?

Apartial answer to this question is simple—wedon’t use our energy resources as effciently

as we could. The standard of living we enjoy in the United States could be maintained

with an expenditure of far less energy per person than at present. This side of solving the

energy problem will be explored later under the heading of Energy Conservation. There is

a large discrepancy between the rate of energy use by a typical citizen of an industrialized

society and the typical citizen of a developing country, and it is accompanied by a notable

difference in what we perceive as the standard of living. This is illustrated in Figure 1.3,

where we see the per capita Gross Domestic Product (GDP) and the per capita energy use

for several countries of theworld.Although not indicated on this fgure, several developing
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Figure 1.3 The Gross Domestic Product (GDP) per capita in U.S. dollars is compared to the total

energy consumed per capita in equivalent barrels of oil for several countries. The small

quarter-circle at the lower left corner is discussed in the text. (Source: United Nations Statistical
Yearbook; data January 2012.)
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countries have very low rankings by either measure, and they would be located within the
small quarter-circle shown at the extreme lower left corner of the fgure.

There is no essential relationship between GDP per capita and the standard of living,
but both are often related to the use of energy. A citizen of a developing country might
use the energy equivalent of less than one barrel of oil per year, compared to an annual
energy equivalent of 20 to 60 barrels per capita for the most industrialized countries. The
nonindustrialized countries derive a large fraction of their necessary energy from the mus-
cular effort of people and animals. There is an interesting quotation from an early physics
textbook written by J. Dorman Steele in 1878:

The combustion of a single pound of coal, supposing it to take place in a minute, is equivalent
to the work of three hundred horses; and the force set free in the burning of 300 pounds of coal
is equivalent to the work of an able-bodied man for a lifetime.

This observation, while a bit off the mark in exact technical detail, is essentially
correct, and it sets the stage and justifes the enormous effort that has gone into our
learning to exploit the fossil fuels—energy reserves held in waiting for hundreds of
millions of years—until we have learned to use them with high effciency to ease human
labor. Whether we refer to tons of coal or barrels of oil, it is indeed the fossil fuels that
have had the major effect. Without fossil fuels we surely would have made progress
toward labor-saving technology based on waterpower, frewood, windpower, and per-
haps even nuclear power, but we would not have gone nearly so far in developing the
energy-intensive society in which we now live.

We may take the average power available to a person to be a measure of the pro-
ductive output of a society. As seen in Figure 1.4, in the United States in 1850, about
0.38 horsepower per personwas available, of which 0.26 horsepowerwas provided bywork
animals. We now have a few hundred times that from other sources. Most of the difference
is due to our use of fossil fuels to make the wheels go around.

Example 1.1

Using generally available information, estimate the dollar value of the equivalent amount
of oil which we each use annually.

Solution

Given:

53 barrel∕(yr ⋅ person); see Figure 1.7.
42 gallons∕barrel; see Energy Equivalents chart inside front cover.
Oil is approximately $1.25∕gallon; estimated from reported crude oil prices.

53
bbl

(yr ⋅ person)
× 42

gal

bbl
× 1.25

$

gal
= ���� $

(yr ⋅ person)

Note that the units of bbl and gal cancel in this calculation. We can extend the answer
to obtain the cost per day of this oil.

2782
$

(yr ⋅ person)
×

1 yr

365 day
= �.�� $

(day ⋅ person)

Here the units of yr have canceled.
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Figure 1.4 Horsepower per capita of all prime movers in the United States since 1850. Only a

small fraction of this available horsepower is in use at any given time. (Source: Historical Statistics
of the United States, Colonial Times to 1970; Statistical Abstracts of the United States 2003.
Washington, D.C.: U.S. Department of Commerce, Bureau of the Census.)
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1.3 Energy Basics

1.3.1 General

Our discussions of energy use and resources can proceed effectively only if we have a

common understanding of exactly what energy is, and what forms it can take.

Physicists and engineers defne energy as the capacity to do work, leaving us then

with the need to defne work. Work is a general term to most of us; it signifes everything

from shoveling snow off the driveway to making out an income tax form, studying for

an examination, or writing an essay. But we may not think of taking a bicycle ride on a

nice Saturday afternoon as being work; it’s too pleasant an experience. In order to make

work a useful concept for scientifc purposes, we must forget about the pleasant and

unpleasant aspects and come up with a defnition suitable for quantitative analysis. We

can achieve this by defning work to be the product of force times the distance through

which the force acts. A common example of this defnition of work is given by a force

pushing an object along a rough surface. The force could be exerted by any agent: human,

steam engine, sled dog, or electric motor. In the British system of units, the force is given

in pounds (lb) and the distance in feet (ft), so work will then be in units of pound-feet,

or more commonly foot-pounds (ft⋅lb). In the metric system, work has the units of

newton-meter (N⋅m), where the newton is the metric unit of force and the meter is the

metric unit of distance. The metric unit of energy, the joule, is defned as 1 J = 1 N⋅m.

The two systems of units (British and metric) are both in common use in the United

States, and conversions between them are not diffcult. The numerical conversion factors

are given inside the covers of this book. It is important to note that the same units are

used for energy and work. We will often fnd that energy and work are equivalent; the

units are identical and, in many cases, the work done on an object is equal to the energy

gained by the object. A more complete discussion of energy units is given in Section 1.4 of

this chapter.

In the example given above, the work, equal to the product of force times distance,

comes out to be zero if the pushed object doesn’t move through some distance. A person

can push against a solid wall all day long, but if the wall doesn’t move, no work is done,

even though the experience will be tiring to the person doing the pushing. In another case,

the work being done also comes out to be zero if an object moves through a distance but

with no force being exerted on it in the direction of the motion. A hockey puck sliding

freely along a perfectly slippery ice surface represents a situation where no work is being

done on either the puck or the ice, and no energy is being expended. Both the force and

the distance must have nonzero values if work is to be done.

Here’s an example that will help us gain a feeling formagnitudes and units of work and

energy: Imagine that you slowly lift a 10 pound sack of sugar upward 1 foot. The force is

10 pounds and the distance is 1 foot, so the work (force times distance) you do on the sack

of sugar is 10 ft⋅lb. The energy to do this work would have come from the food you ate. The

work done can also be expressed in metric units. From the chart of conversion factors, we

see that 1 ft⋅lb is the same as 1.36 joules, so the 10 ft⋅lb is 13.6 joules. Or we could deal in

terms of British thermal units (Btu), another unit of energy. From the chart of conversion

factors, 1 ft⋅lb is seen to equal 0.00129 Btu. Thus the 10 ft⋅lb of energy expended would

be the same as 0.0129 Btu.
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Example 1.2

A force of 50 pounds pushes a box along a foor a distance of 100 feet. How much work
(in ft⋅lb) has been done? How much energy (in joules) has been expended?

Solution

Work = force × distance

= 50 lb × 100 ft = ���� ft⋅lb
Energy expended = work done

= 5000 ft⋅lb × 1.36
joule

ft⋅lb
= ���� joules

The conversion factor between ft⋅lb and joule has been taken from the table of
conversion factors.

1.3.2 Forms of Energy

Energy comes inmany forms and can in principle be transformed fromone form to another
without loss. This is consistent with the Principle of Energy Conservation, which we will
address later in Section 1.7. Some of the common forms of energy are discussed here.

(a) Chemical Energy Chemical energy is the energy stored in certain chemicals or mate-
rials that can be released by chemical reactions, often combustion. The burning of wood,
paper, coal, natural gas, or oil releases chemically stored energy in the form of heat energy
and, as discussed earlier, most of the energy used in the United States is of this form. We
heat our homes, power our automobiles, and turn the generators that provide electricity
primarily with chemical energy.

Other examples of chemical energy sources are hydrogen, charged electric batteries,
and food in the stomach. Chemical reactions release this energy for our use.

(b) Heat Energy Heat energy is the energy associated with random molecular motions
within any medium. The term thermal energy is interchangeable with heat energy. Heat
energy is related to the concept of temperature. Increases of heat energy contained in
any substance result in a temperature increase and, conversely, a decrease of heat energy
produces a decrease of temperature.

(c) Mass Energy Albert Einstein taught us that there is an equivalence between mass
and energy. Energy can be converted to mass, and mass can be converted to energy. The
famous formula

E = mc2

gives the amount of energy, E, represented by a mass, m. This energy is often referred to
as themass energy. The symbol c stands for the speed of light.

The most dramatic recent examples of this equivalence are in nuclear weapons and
nuclear reactors, but our entire existence is now known to depend on nuclear reactions
in the sun. There we have atomic nuclei coming together in a reaction with the resulting
products having less mass than what went into the reaction. The mass that is lost in the
reaction appears as energy according to the Einstein equation

ΔE = Δmc2,
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where Δm (read it as delta m) is the missing mass, and c is the speed of light. The energy
that appears, ΔE, is in joules if Δm is in kilograms and c is in meters per second. Because c
is such a very large number, 3 × 108 m∕sec, a small loss of mass results in a huge release of
energy. At a detailed level, any reaction, of any type, chemical or nuclear, which releases
energy does so in association with a loss of mass between the inputs and outputs, according
to the Einstein equation.

The idea of mass energy is relatively new in human experience. Einstein put forth the
E = mc2 equation in the early 1900s. It was not until the 1920s and 1930s that the nuclear
fusion processes in stars were frst understood and in the 1940s that energy release from
man-made nuclear fssion reactions was frst demonstrated.

(d) Kinetic Energy Kinetic energy is a form of mechanical energy. It has to do with mass
in motion. An object of massm, moving in a straight line with velocity v, has kinetic energy
given by

KE = 1

2
mv2.

If the object in question is an automobile, work must be done to bring the auto up to
speed, and, conversely, a speeding car must do work in being brought to rest. The work
done on the accelerating car is derived from the fuel, and the work done by the stopping
car will appear mainly as heat energy in the brakes if the brakes are used to stop the car.

In a similar manner, an object rotating around an axis has kinetic energy associated
with the rotation. It is just a matter of all the mass elements which make up the object
each having velocity and kinetic energy according to the description given above. These
combined kinetic energiesmake up the kinetic energy of the rotating object.We commonly
see rotational kinetic energy in a potter’s wheel, a child’s top, an automobile fywheel, and
so forth. Someday rapidly rotating fywheels may provide the stored energy needed to
power a car.

(e) Potential Energy Potential energy is associatedwith position in a force feld. An obvi-
ous example is an object positioned in the gravitational feld of the earth. If we hold an
object having weightw at a height h above the earth’s surface, it will have potential energy

PE = w × h

relative to the earth’s surface. If we then release the object and let it fall to the earth,
it will lose its potential energy but gain kinetic energy in the same amount. Another
example would be at a hydroelectric dam where water is effectively, but usually not
literally, dropped onto a turbine below. In this example, the water hitting the blades of the
turbine has kinetic energy equal to the potential energy it would have had at the top of
the reservoir surface. This potential energy is measured relative to the turbine’s location.
The kinetic energy of the water becomes electric energy as the turbine spins a generator.

(f) Electric Energy The idea of electric energy is less obvious than the examples of other
types given previously. Not surprisingly, electric energy is one of the last types of energy
to have been brought into practical use. With electric energy, nothing can be seen, either
stationary or in motion, but the effects can be readily apparent. In spite of this diffculty,
an understanding of electric energy is necessary for the functioning of a complex indus-
trial society. It is electric energy that allows us to have telephones, television, lighting,
air-conditioning, electric motors, and so forth.

If an electric charge q is taken to a higher electric potential (higher voltage) V, then it
is capable of releasing its potential energy, given by PE = q × V, in some other form such




